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Optimization of Frequencies Spectrum in Vibrations
of Flexible Structures

W. Szyszkowski* and J. M. Kingt
University of Saskatchewan, Saskatoon STN 0W0, Canada

Optimality criteria are derived and used to maximize a set of frequencies for a structure of given weight. The
criteria include both membrane and bending effects and nonlinear relations between the stiffness and mass
matrices. An error norm is proposed and used to determine the values of design variables and Lagrange
multipliers at optimum. Some details of the accompanying iterative procedure are discussed and the numerical

examples of simple test structures are presented.

Introduction

TRUCTURES with some frequency requirements can be

optimized using two computationally different strategies.
Either the weight of the structure is minimized subject to given
frequency constraints, or the frequencies are maximized for
structures of given weight.

The first strategy requires scaling procedures in order to
adjust the frequencies after each iteration to the level specified
by the constraints.!** Since the frequencies are, in general,
complicated functions of the design variables, these proce-
dures may pose a serious challenge, particularly, if the element
stiffness matrices are nonlinear in terms of the design variables
or if multiple eigenvalues are involved.

The second strategy,5-® in which the frequencies are treated
as objective functions, though somewhat more analytically
involved (inclusion of more than one mode of frequency into
consideration automatically creates a multicriteria optimiza-
tion problem), seems to be free of the difficulties mentioned
above. In particular, scaling of the weight constraint after
each iteration is either trivial or not necessary at all.”# Also
handling multiple eigenvalues is relatively straightforward, as
it was shown in Refs. S, 7, and 8. The optimal (maximum)
fundamental frequencies found there were either inherently
multimodal or became multimodal in the course of optimiza-
tion process.

Theoretically, these two strategies are equivalent because
the structure treated either way must satisfy identical optimal-
ity conditions at optimum.5’

The second strategy is used here to maximize a cluster of the
first N frequencies for structures of given weight and with
specified ratios between these frequencies. The method pro-
posed is an extension of the approach presented in Refs. 7 and
8 where only the fundamental frequency was maximized.

We used the optimality criteria method which is considered
independent of the number of design variables and is particu-
larly well suited for optimal sizing of structures.’

The optimality criteria derived here are used to formulate an
error norm which represents the distance between any trial
design and the optimal design. The iterative procedure is then
developed that modifies design variables in order to reduce
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this error norm. If the error norm is sufficiently small, the
design satisfies all of the optimality conditions and is assumed
optimal.

Optimization Problem

Consider an elastic structure of a given weight W, (volume
Vo). The set of N frequencies of free vibrations wy, . . ., wyis
to be monitored and optimized to improve the dynamic char-
acteristics of the design without adding to its weight. It should
be done by modifying the stiffness and mass of all of the
structural members until the structure meets specified optimal-
ity conditions.

In general, we want to maximize the whole cluster of fre-
quencies in such a way that the ratio of each higher frequency
to the fundamental one satisfies the condition

w,-/wl =1+ a; (1)
where a; is a given set of coefficients indicating the required
distribution of the frequencies in the cluster. The coefficients
a; may be multiple; however, they all must be positive and in
ascending order (i.e., a; < a;, ). Formally, the objectives of
the optimization are stated as

maximize
Wy (Za)
subject to
(l+a)w—w; <0, i=2,...,N (2b)
and
Lvi=v (2¢)
J
also
Vmin = Vj = Vmax (Zd)

where design variable V; is the volume of jth element and the
summation is over all of the structural elements used in the
FEM analysis. Since, formally, the objective function w, is
used in the constraints [Eq. (2b)], this problem can also be
considered as a multicriteria optimization problem.%6

Equation (2¢) represents a constant-volume constraint and
Eq. (2d) are side constraints. The side constraints can be
enforced explicitly in the course of iterations and do not need
to be included in the optimality criterion.

If all a; are zero, this represents the case of multimodal
optimization for maximum fundamental frequency discussed
in Refs. 7and 8. Fora; = . .. =a;,,(wherei + I < N), the ith
frequencies may be multiple while the remaining frequencies,
@y, - . .5 Wi—1, May be of single modes.
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We assume that all of the frequencies required and the
corresponding eigenvalues x; can be obtained solving the ei-
genvalue problem:

K -w?M)x; =0 (€))

where K and M are the stiffness and mass matrices, respec-
tively.

The eigensolutions satisfy the following orthogonality and
normalization properties:

l/z(xiT MX1) = 6,’1 (43.)
1/?.(X,‘T KX1) = O)i2 5,'1 (4b)

where &, is the Kronecker delta and the factor V2 is added for
convenience.

Optimality Conditions
The Lagrange functional for the problem [Eq. (2)] is written
in the form ‘

N
L, V) = w2+ Lyl — (1 +a) o
i=2

En,< xT Mx; — ) + 3(%)1/, - V0> (5)

i=1

where v; are Lagrange multipliers related to the inequalities in
Eq. (2b) and »; and § are the multipliers corresponding to the
equality constraints given by Eq. (4a) and Eq. (2c), respec-
tively. The index “‘i’’ represents the ith mode and the index
Y A represents the Jth element throughout the paper.

Note that in order to maximize the objective function [Eq.
(2a)], the multipliers y; (i =2 ., N) cannot be negative.
Taking the derivatives of L with respect to x; and using Eq.
(4), one obtains the equations identical in the form to Eq. (3)
from which we can conclude that

T’l=7iwi2’ l=11’N (63)
where

N
n=1-Xd+a)y (6b)
1=
The multiplier v, introduced here and related to the frequency
w; (the corresponding a; = 0) is not independent. It can be
determined only after v, . . ., ¥y are found. Using this multi-
plier, the Lagrange functional can be rewritten in the alterna-
tive form

N
L V) = Lvie? }:11,< X TMx; — 1) +B<EV Vo> 7
i=1

From the viewpoint of multicriteria optimization theory,!° the
functional Eq. (7) represents the problem of finding Pareto-
optima for the linear combination of N functions w; with the
corresponding weighting factors v; satisfying Eq. (6b). This
dual interpretation of v; [in Eq. (5) they were treated strictly as
Lagrange multipliers] can conveniently be used to raise sepa-
rately any single frequency by manipulating the magnitudes of
v:. For example, if one a priori assumes that v, =1 for a
particular kth mode, and v; = 0 for i # k, only this kth fre-
quency will be maximized. Similarly, if y, = ..., =0, from
Eq. (6b) we have v, = 1 which is the case of optimization for
the fundamental frequency w;. However, this optimization is
valid only for unimodal optimal designs. Such cases were
considered in Refs. 4, 11, and 12. Note that Eq. (6a) can be
substituted into Eqs. (5) or (7) only after the derivatives of L
with respect to V; are calculated. This is necessary in order to
distinguish between w; in Eq. (5) which is considered a func-

tion of V; and w; in Eq. (6a) treated as a parameter character-
izing a design of a given set of V;.

Taking the derivatives of L with respect to V; and then
substituting Eq. (6a), we have

K 1 oM
i\ 5 Xi Xi—~w?xT—x|+B8=0 8
Ev<2 FIAE s anx) 8 ®)

For most of the elements (beams, plates for example), the
stiffness matrix for the jth element K; can be decomposed into
the part representing the membrane (ax1a1) K and the bending
K} stiffnesses such that

K= Kf + K} )
This decomposition is necessary because the membrane and
bending stiffnesses are related in different ways to the geomet-
rical parameters of the elements that are used as design vari-
ables (height, width, cross-sectional area, etc.). For example,
for a two-dimensional beam element, we have

Ki=cfAj+cl (10)

where ¢/" and c}’ are matrices depending on the material prop-
erties and the length of the element only, and A; and I; are the
cross-sectional area and moment of inertia, respectively. To
use, for example, this cross-sectional area A; as design vari-
ables, we have to define the relation I(4) which usually is
assumed in the form

I =b Ay an

where b and p are constant parameters. Typically, p = 1 (truss
element), 2, or 3 if the width, height, or both are to be
modified. Note that p can also be a real number if only a
portion of the cross section (a flange for example) is opti-
mized.

The mass matrix for the jth element can be written in the
form

}\szcjm Aj+mj (12)

where ¢” is a matrix depending on the material properties and
the length of the element and m; is a nonstructural portion of
the mass. We use either structural elements for which m; =0
or nonstructural elements for which M; = m;. Now, using
Eqgs. (9-12), the derivatives in Eq. (8) are determined as

aK ¢ K;
1-— =
aV =( )l, + v, (13a)
6M M
aV V< (13b)
J

for structural elements only, and where /; denotes the length of
the element.

Substituting Eq. (13) into Eq. (8) we have

oL
7 E vil(1-p) NE; +pSE; —KE;]1+8 V;=0 (14)
i=1
where
NE; = Y [x;7 (cf A)) x;] (15a)
SE; = ¥4 (x47 Kj x) (15b)
KE; = V4 w? (x;7 M; x) (15¢)

Here NEj;, SE;, and KEj; are the membrane (axial) strain
energy, the total strain energy, and the kinetic energy, respec-
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tively, stored in the jth element due to the ith mode of vibra-
tions.

Summing up the energies in all elements, we obtain
L SE; = ¥ KE; = o (16)
J J

For each mode, we can determine the ratio of the membrane
strain energy to the total strain energy ¢; defined by

$i=1 NE,/ L SEj (17)
J J

and the ratio of kinetic energy of nonstructural elements to the
total kinetic energy, o;, given by

= Ly ” m,x,-,-/E x;T M; x; (18)
J J

Summing Eq. (4) for all elements and using Eqs. (15-18), the
multiplier 8 can be determined as

N
B= — ;17,- w2 [(1 -6 — 1) + a1/ Vo (19

Note that w; = (1 4 @;)w; for all nonzero multipliers v;. Using
this, Eq. (14) can be written in the form

L & "
— =Y v (+a) (EES; -MC)=0 (20)
an =1
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Fig. 1a Plane test frame.
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Fig. 1b Sizing at bimodal optimum.

where
EES; = [(1 - p) NE; + pSE; — KE;1/AE; (21a)
MCi=(1-p)¢i+p+o—1 (21b)
and where
AE; = <E SE,,) Vi/ Vo (22)
J

Here AEj; is the ‘“‘average’ strain energy stored in the jth
element due to the ith vibrations mode. EES;; is the element
energy state in the jth element due to the ith mode, and MC;
is the modal constant for the ith mode.

The fundamental difference between a single-mode opti-
mization (N =1) and a multimodal optimization (N >1)
should be noted. This difference will effect any perspective
iterative scheme. If dealing with a single-mode optimization
for which v, =+, = 0, from Eq. (20) one obtains

EES); = MC; = const (23)

proving that the combination of energies as defined in Eq.
(21a) must be identical for all elements. (This approach was
also called the energy ratio method.!?) For multimodal opti-
mization, the magnitude of EES; at optimum varies from

05=0.035 a,=0.0i5 0,=0.005
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Fig. 1d Effect of mode separations on frequencies at optimum.
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element to element and obviously is not equal to MC;. Addi-
tionally, the set of v, is to be determined.

To obtain the complete set of Kuhn-Tucker necessary condi-
tions for the problem, Eq. (2), we have to add the following
switching conditions to Eq. (20), which represents the L, gra-
dient:

¥i [(@wd -0 +a)1=0, i=2,...,N 24)

Additionally, the Lagrange multipliers must be positive and
must satisfy Eq. (6b). Summarizing, the complete set of Kuhn-
Tucker conditions reads

K — M) x; =0, i=1,...,N (25a)

N
Y v:( + a;* (EES; — MC;) = 0

i+1

J =1, ..., EN (all elements) (25b)

vi o/ @ — (1 +a)? =0, i=2,..,N (250

N
Yv(+aP=1, and ;=0 (25d)

i=1

The first equation, Eq. (25a), represents the L, gradient and
is always satisfied automatically at the beginning of each
iteration when solving the eigenvalue problem. Thus, this
equation is used only to update w; and x; in terms of the
current magnitudes of design variables. The remaining condi-
tions, Eqs. (25b-25d), altogether EN + N equations, will be
used to determine EN values of V; and N values of v; at
optimum,

It can be also shown that the Lagrange functional L is at
least a positive semidefinite function of V; since

PL
avav,
#L @ -

1)
avi " W; vi 1+ @) [x;T K x;1=0  (26b)

0, forj#k (262)

The term in the brackets represents the bending strain energy
stored in the jth element and cannot be negative. Thus, L is a
positive definite function of V; except for the case when only
the membrane (axial) strain energy is involved as for example
for trusses (for which also p = 1).

It can be also shown that any constraints, Eq. (2b), or any
equivalent constraint g;(V;) in the form

g =0+ a,~)2 w12 - w,-2 =<0 (27)

is also at least a positive semidefinite function of V;. There-
fore, the optimization problem discussed here can be classified
as a convex problem and consequently any design satisfying
the conditions [Eq. (25)] must be at global optimum. Because
of convexity of the optimization problem, the solution to these
equations should be unique.

Iterative Procedure

Having derived the optimality criterion, we can use it to
verify any trial design (provided the modal analysis is com-
pleted) against optimum.

The following error norm @ is proposed:

1 N
Q= LE WYV +5 L1 lw/w? - (1 + e (28a)
2V0 j 2,‘___ 1

where

N
¥, = Y vi (1 + @) (EES; — MC)) (28b)
i=2

Here ¥; are residuals of Eq. (25b) and the second term repre-
sents the error in Eq. (25¢). Only v; meeting the requirement
[Eq. (25d)] are admitted. The residuals ¥; satisfy the following
relation [this can be directly proved using Egs. (17), (21-22),
and (28b)]:

Yv,v,=0 29
j

Clearly the norm §2 is always positive except for the optimal -
point where all conditions [Eq. (25)] are satisfied and where it
becomes zero.

If, from the modal analysis of a trial design, the frequencies
w; and the eigenmodes x; are found, one can select any set of
v; satisfying Eq. (25d), substitute it into Eq. (28), and calculate
Q(y;). This is possible due to the dual interpretation of v; [see
Eq. (7)]. This property can also be used in unimodal optimiza-
tion to maximize a particular frequency wy. It is enough to
assume v; = 0, where i # k, for this purpose. To solve the
general problem [Eq. (2)], we will select a set of v; that
minimizes @ (which is a quadratic function of v;). It can be
done by setting to zero the derivatives of Q with respect to v;,
that is;

0Q 1 av; w;? 2|2

— ==,V - —Vi+y —')-—(l+,-> =0,
dv; Vo? ! dy; i |:<‘-012 ¢ (30)
i=2,..,N

Substituting Eq. (28b), we get N — 1 linear equations with
respect to vs, . . ., v,. Calculating v, from Eq. (30) and substi-
tuting back into Eq. (28a) should give us the minimum value
of the error norm . However, the set of v; satisfying Eq. (30)
may not meet the requirements [Eq. (25d)], especially at the
beginning of iterations when a trial design is still quite distant
from optimum.

These requirements can be enforced numerically modifying
the v; (( =2, . . ., N) calculated from Eq. (30) by setting all
negative multipliers to zero and then scaling down the remain-
ing v; to satisfy Eq. (25d). Such modified set of v can then be
used to obtain the residuals ¥; for each element and finally to
calculate the magnitude of Q.

Since ¥; satisfy Eq. (29), which states that the weighted
average residual is zero, we can conclude that all nonoptimal
elements can be separated into two categories having either
positive or negative residuals. The elements can be either too
stiff or not stiff enough, therefore it is easy to find a corre-
spondence between the sign of the residual and the stiffness of
each particular element. Numerical experimentations (there
are only two options to check!) as well as some analysis’ prove
that elements with positive ¥; are too flexible and elements
with negative ¥; are too stiff.

This information suggests the character of modifications to
the design variables. For example, using the cross-sectional
area A;, too flexible elements will be stiffer and too stiff
elements will be made more flexible if the area increments dA4;
are assumed in the form

3A; = c ¥, A; 31

where c is a positive number. Further analysis’ shows that if ¢
is small enough, typically ¢ = 0.1, and if the changes of v;
between iterations are negligible, the residual increment 9¥,,
to be expected in the next iteration, should approximately be
equal to

Since ¢ >0, the signs of the increment 0¥; and the residual
¥; are always opposite. This feature indicates that the proce-
dure should perform somewhat similar to the performance of
the gradient-based procedures. It is also important that the
residuals ¥; will gradually be reduced to zero independently of
the selection of the set of v;, which is one of the consequences
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Fig. 2 Possible optimization paths.

of the dual formulation [Eq. (7)]. However, if Eq. (30) is used
for this purpose, the resulting set of v; will finally satisfy the
switching condition [Eq. (24)], since in the limit ¥; — 0 and
Eqgs. (25¢) and (30) will become equivalent.

Additionally, if the modifications to the design variables A;
are such that the volume increment 3V} is proportional to the
residual ¥;, as it is the case when using Eq. (31), the resultant
total volume increment, because of the property Eq. (29), is
always zero, that is,

AV =YaVi=c L, ¥, V, = 0 (33)
J J

This relation proves that between iterations no scaling of the
design variables is required in order to meet the equality
constraint since the volume of the design remains automati-
cally constant. Numerically, this is a very convenient feature
of the procedure.

Some Numerical Tests and Discussion

The procedure discussed here has been tested on simple
beam, frame, and plate structures. For the eigenvalue analysis
ANSYS, the FEM program was used. ANSYS, besides the
complete eigensolution, provided also the total strain energy
and the kinetic energy for elements due to each vibration mode
[SE; and KEj; in Eqgs. (15b) and (15¢)]. Only the membrane
strain energy NEj; had to be calculated using Eq. (15a) di-
rectly. The initial designs were always uniform with the funda-
mental frequency denoted by w,.

Figure 1 shows a frame fixed to the ground with a nonstruc-
tural mass in the middle. This frame, which was also used to
test optimization procedures presented in Refs. 7 and 12, is
convenient for a multimodal testing because the frequencies
corresponding to the first two modes are much lower than the
frequency of the third mode and because the relative magni-
tudes of these two frequencies (for the initial design) can be
easily adjusted by using smaller or bigger nonstructural mass
m. Therefore, at optimum, one should expect that the second
mode will be included (bimodal optimum design) and the third
mode will be excluded. This somehow predictable optimiza-
tion route can be monitored in terms of convergence and
behavior of Lagrange multipliers.

The frame shown in Fig. la is made of aluminum and
weighs M = 0.8 kg. When uniform it has the following fre-
quencies: w, = w; = 130.7 Hz (antisymmetric), w, = 1.88 w, =
246 Hz (symmetric), and w3 = 7.47 w, = 971 Hz (antisymmet-
ric). The frequency spectrum is maximized assuming various
separation ratios between the first and higher modes. Figure
1c shows the iterations history if the separation was first 3.5%
(a; = 0.035, a; = 0.07), then was changed to 2.5% (a, = 0.025,
a; = 0.05), and so on.

As expected, the third mode was too high to influence the’
optimum; therefore, its histogram is not shown in the plot.
Clearly, if the fundamental frequency is the primary goal of
optimization, its maximum value (wy. = 1.42 w, = 186 Hz)
can be obtained assuming that all @; = 0. Any requested sepa-
ration a,>0 will lower w,; as it is shown in Fig. 1d.

It should be emphasized that, according to the formulation
used here, a trial design for which w; < w; (1 + @;) is infeasible
[see Eq. (27)]. Such a possibility exists only if ¢;> 0. If all
a; = 0, due to the ascending order of the eigenvalue solutions,
any trial design must satisfy the constraint Eq. (2b) and conse-
quently the optimum will always be approached from the
feasible direction with v; = 0. If, however, g; >0, there are, in
general, two possibilities:

1) Optimum does not exist, which means that the assumed
a; is too high for this particular design and consequently all
trial designs will be consistently infeasible.

2) Optimum exist and can be approached from feasible
(line A in Fig. 2) or infeasible directions (line B).

In the latter case, there are several possible scenarios how
the optimum may be reached. If for a trial design w; <w,
(1 + @), this design can formally be converted to feasible if the
constraint function g; instead of being considered nonpositive,
as in Eq. (27), is assumed to be nonnegative [e.g., g; (V;) = 0].
However, as a consequence of this redefinition, the corre-
sponding ~; must be nonpositive at optimum which means that
the iterative procedure must be adjusted so as to accept and
process negative Lagrange multipliers (line B,).

Another option is to drive the design into the feasible do-
main first and then approach the optimum. This can be done
by modifying v; for the next iteration to the value that should
be higher than the one calculated from Eq. (30), but not bigger
than v; = (1 + a;) 2. If one assumes v; = (1 + ;) ~ 2 [the re-
maining multipliers must be zero according to Eq. (25d)], the
procedure will attempt to raise the frequency w; only [see Eq.
(M)]. The modified ~; should be used until w; becomes bigger
than (1 + @;)w, (line B, in Fig. 2).

If the modification of +; are in the form

(V1) modifiea = ¥i [y (1 + @;)/w;]" (34
w, W
| = _2.= _3 = .41
wp Wo wg

Fig. 3a  Free-flying test frame, trimodal optimum.

m=0.25M

Fig. 3b Spatial test frame, trimodal optimum.
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where £ is a positive variable exponent, this generally speeds
up the convergence. The values s =1, if the current trial
design is feasible, and & = 10, if the design is infeasible, are
recommended. Note that the modification Eq. (34) acts to-
ward closing the gap between w; and w; if w; > (1 + @;)w; and
makes this gap bigger if w; < (1 + g;)w;.

Two other examples of optimal designs are shown in Fig. 3.
These frames were optimized for maximum fundamental fre-
quency (all g; = 0). Both frames are characterized by a densely
packed cluster of frequencies. For example, initially (uniform)
the first five frequencies for the free-flying frame (Fig. 3a)
were 22.5, 22.7, 25.6, 27.3, and 29.3 Hz; thus the fifth fre-
quency ws was only 30.4% higher than the fundamental one.
At optimum the fundamental frequency has been raised to
31.7 Hz (41% increase). This frequency is trimodal. The three-
dimensional frame shown in Fig. 3b is also trimodal at opti-
mum, although its fundamental frequency has been increased
only by 17.4%.

Conclusions

An alternative strategy in which the eigenvalues are used as
objective functions for optimization of structures with fre-
quency requirements is presented. From the engineering view-
point, this strategy may be perhaps less intuitive and natural
than the minimum weight optimization; however, it provides
some numerical advantages discussed in the paper. The opti-
mal set of design variables is determined satisfying the com-
plete optimality conditions. The iterative procedure proposed
does not require any constraints, approximations, or scaling
of the design variables.
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